223 research outputs found

    Contributors to the May Issue/Notes

    Get PDF

    Recent Decisions

    Get PDF

    Recent Decisions

    Get PDF
    Comments on recent decisions by Joseph V. Stodola, Kenneth J. Konop, John H. Tuberty, William M. Cain, John D. Voss, Alvin G. Kolski, and W. D. Rollison

    Impact of residual elements on zinc quality in the production of zinc oxide

    Get PDF
    The paper is focused on zinc oxide manufacturing process. The present work deals with the character and morphology of the input material for the production of ZnO by the indirect pyrometallurgical process. Undesirable phases in the feedstock can be identified through profound recognition of the source material and the nature of its microstructure. If these compounds diffuse into the lining during thermal processes, they become the cause of stress in metallurgical ceramics. The emergence of these chemical reactions may subsequently affect the entire metallurgical zinc smelting process. The results obtained by analysis are used to minimize waste - zinc slag and to eliminate the conditions which enable the formation of the undesired product, thereby increasing the productivity of the ZnO production

    A one-dimensional numerical model for the momentum exchange in regenerative pumps

    Get PDF
    The regenerative pump is a rotor-dynamic turbomachine capable of developing high heads at low flow rates and low specific speeds. In spite of their low efficiency, usually less than 50 %, they have found a wide range of applications as compact single-stage pumps with other beneficial features. The potential of a modified regenerative pump design is presented for consideration of the performance improvements. In this paper the fluid dynamic behaviour of the novel design was predicted using a one-dimensional model developed by the authors. Unlike most one-dimensional models previously published for regenerative pumps, the momentum exchange is computed numerically. Previous one-dimensional models relied on experimental data and correction factors; the model presented in this paper demonstrates accurate prediction of the pump performance characteristics without the need for correction with experimental data. The validity of this approach is highlighted by the comparison of computed and measured results for two different regenerative pump standards. The pump performance is assessed numerically without the need of correction factors or other experimental data. This paper presents an approach for regenerative pumps using a physically valid geometry model and by resolving the circulatory velocity in peripheral direction

    Reversal of Fragile X Phenotypes by Manipulation of AβPP/Aβ Levels in Fmr1KO Mice

    Get PDF
    Fragile X syndrome (FXS) is the most common form of inherited intellectual disability and the leading known genetic cause of autism. Fragile X mental retardation protein (FMRP), which is absent or expressed at substantially reduced levels in FXS, binds to and controls the postsynaptic translation of amyloid β-protein precursor (AβPP) mRNA. Cleavage of AβPP can produce β-amyloid (Aβ), a 39–43 amino acid peptide mis-expressed in Alzheimer's disease (AD) and Down syndrome (DS). Aβ is over-expressed in the brain of Fmr1KO mice, suggesting a pathogenic role in FXS. To determine if genetic reduction of AβPP/Aβ rescues characteristic FXS phenotypes, we assessed audiogenic seizures (AGS), anxiety, the ratio of mature versus immature dendritic spines and metabotropic glutamate receptor (mGluR)-mediated long-term depression (LTD) in Fmr1KO mice after removal of one App allele. All of these phenotypes were partially or completely reverted to normal. Plasma Aβ1–42 was significantly reduced in full-mutation FXS males compared to age-matched controls while cortical and hippocampal levels were somewhat increased, suggesting that Aβ is sequestered in the brain. Evolving therapies directed at reducing Aβ in AD may be applicable to FXS and Aβ may serve as a plasma-based biomarker to facilitate disease diagnosis or assess therapeutic efficacy

    A conserved loop-wedge motif moderates reaction site search and recognition by FEN1

    Get PDF
    DNA replication and repair frequently involve intermediate two-way junction structures with overhangs, or flaps, that must be promptly removed; a task performed by the essential enzyme flap endonuclease 1 (FEN1). We demonstrate a functional relationship between two intrinsically disordered regions of the FEN1 protein, which recognise opposing sides of the junction and order in response to the requisite substrate. Our results inform a model in which short-range translocation of FEN1 on DNA facilitates search for the annealed 3′‑terminus of a primer strand, which is recognised by breaking the terminal base pair to generate a substrate with a single nucleotide 3′‑flap. This recognition event allosterically signals hydrolytic removal of the 5′-flap through reaction in the opposing junction duplex, by controlling access of the scissile phosphate diester to the active site. The recognition process relies on a highly-conserved ‘wedge’ residue located on a mobile loop that orders to bind the newly-unpaired base. The unanticipated ‘loop–wedge’ mechanism exerts control over substrate selection, rate of reaction and reaction site precision, and shares features with other enzymes that recognise irregular DNA structures. These new findings reveal how FEN1 precisely couples 3′-flap verification to function

    Operational flexibility options in power plants with integrated post-combustion capture

    Get PDF
    Flexibility in power plants with amine based carbon dioxide (CO2) capture is widely recognised as a way of improving power plant revenues. Despite the prior art, its value as a way to improve power plant revenues is still unclear. Most studies are based on simplifying assumptions about the capabilities of power plants to operate at part load and to regenerate additional solvent after interim storage of solvent. This work addresses this gap by examining the operational flexibility of supercritical coal power plants with amine based CO2 capture, using a rigorous fully integrated model. The part-load performance with capture and with additional solvent regeneration, of two coal-fired supercritical power plant configurations designed for base load operation with capture, and with the ability to fully bypass capture, is reported. With advanced integration options configuration, including boiler sliding pressure control, uncontrolled steam extraction with a floating crossover pressure, constant stripper pressure operation and compressor inlet guide vanes, a significant reduction of the electricity output penalty at part load is observed. For instance at 50% fuel input and 90% capture, the electricity output penalty reduces from 458 kWh/tCO2 (with conventional integration options) to 345 kWh/tCO2 (with advanced integration options), compared to a reduction from 361 kWh/tCO2 to 342 kWh/tCO2 at 100% fuel input and 90% capture. However, advanced integration options allow for additional solvent regeneration to a lower magnitude than conventional integration options. The latter can maintain CO2 flow export within 10% of maximum flow across 30–78% of MCR (maximum continuous rating). For this configuration, one hour of interim solvent storage at 100% MCR is evaluated to be optimally regenerated in 4 h at 55% MCR, and 3 h at 30% MCR, providing rigorously validated useful guidelines for the increasing number of techno-economic studies on power plant flexibility, and CO2 flow profiles for further studies on integrated CO2 networks
    corecore